
Purely functional programming
There is no turning back

Marek Kidoň

February 23, 2017

What is purely functional programming

Functional
I Style of building the structure of computer programs.
I Declarative: The job is done using expressions(declarations),

not statements.
I Function output depends on inputs only.

Purely functional

I Controversy: A lot of things to a lot of people.
I How do you handle computational side effects purely?
I Treatment of computational effects is the key.

Why do we like it

I Very expressive
I Highly polymorphic
I Parallelism and concurrency
I Strong static typing

Types: Motivation

I Mars Climate Orbiter disintegrated during trajectory correction
in 1999.

I Cause: Software provided by Lockheed Martin calculated in
pound-seconds. NASA expected newton-seconds. Cost: $125
million.

I Ariane 5 was destructed by engineers shortly after launch.
I Cause: Computers tried to cram 64bit number into 16bit

space. Cost: $500 million worth of the carried satellite.
I Some dude’s website kicked a bucket.
I Cause: An obscure function expected a capitalized string but

received a lowercase one. Cost: a really bad day for some dude
and his employer.

I Every day a lot of money is wasted on bugs, their consequences
and their fixing (which often introduces new bugs...).

Types: What are they?

I Types and static type systems are programmers best friend!
I Controversy: a lot of things to a lot of people.
I Definition: Syntactic? Representational? Behavioral? Value

space definition?
I Common sense: Type is uniquely defined by the set of its

values. Think of integers, characters, tuples, lists, etc...

Word32 = 0 | 1 | 2 | 3 | ... | 4294967295
SymbolTuple = AA (’a’,’a’) | ... | ZZ (’z’,’z’)

Types: The epic fail...

I How do you define a new type in most programming
languages?

I How do you represent the Logic = {True, False, Unknown,
Uninitialized, . . . } type used in hardware related applications?

I Are data structures or objects the solution?
I Answer: It depends...
I Common practice is to map type semantics into a structure of

existing types. Are their sets of values isomorphic?

Types: Example 1
#define TRUE 0
#define FALSE 1
#define UNKNOWN 2
#define UNINITIALIZED 3
typedef unsigned int STD_LOGIC;
void launchViciousRocket(STD_LOGIC);

int main(void) {
STD_LOGIC signalValue;

signalValue = UNKNOWN;
signalValue = 0xdeadbeef;

launchViciousRocket(signalValue);

return 0;
}

I Question: Will the vicious be rocket launched?
I Answer: Who knows...

Types: Example 2
void launchViciousRocket(STD_LOGIC signal) {

switch(expression) {
case TRUE :

killMillionsOfPeople ();
break;

case FALSE :
doNotKillMillionsofPeople ();
break;

case UNKNOWN :
newSignal = flipACoin ();
launchViciousRocket(newSignal);
break;

}
restOfTheStatements ();

}

I Question: will be the vicious rocket launched?
I Answer: Who knows...

Types: The purely functional approach

I You can create new types as labels for their sets of values.
I A value of a certain type is instantiated by picking a member

from its set.
I Pattern matching: as opposed to creating, you have a way to

dismantle it.
I If you do not match on all members of the type compiler may

complain.

Types: Example 3

launchViciousRocket
:: StdLogic
-> PossiblyKillMillionsOfPeople

data StdLogic
= TRUE
| FALSE
| Unknown
| Uninitialized

main =
let signalValue = 0xdeadbeef
in launchViciousRocket(signalValue)

I Question: will be the vicious rocket launched?
I Answer: No, such program will never compile

Types: Example 4

launchViciousRocket
:: StdLogic
-> PossiblyKillMillionsOfPeople

launchViciousRocket signal = case signal of
TRUE -> killMillionsOfPeople
FALSE -> doNotKillMillionsofPeople
Unknown -> withFlipACoin launchViciousRocket
// Uninitialized ->

I Question: Will be the vicious rocket launched?
I Answer: Who knows...

Types: The lesson

I Computer program semantics can be implemented in types.
I Type correctness can be checked at compile time!
I Sadly you can’t create new types in most programming

languages.
I You rely on run-time checks instead of compile-time type

checker.

The Vision case study
Task

I Write an automated quality control system for Hyundai.
I You have less than 2 months for it.
I Two people project.
I Customer has to sign an acceptation protocol.

Result
I 10000 loc of Haskell
I Few hundreds lines of C++/openCV using functional

techniques.
I Not a single unit test.
I Some functional tests.
I Acceptation protocol signed.
I Still waiting for first bug report.

PFP: Programmer’s mindset

I Problem: People do make mistakes.
I Solution: Computers do not.
I Problem: People hate writing boilerplate code. It is

repetitious, boring and error prone.
I Solution: Use as many abstract constructs as possible. Do not

write boilerplate code. Good compiler can generate it for you.
I Problem?: People are lazy.
I Solution: Be lazy to type. Do not be lazy to think. Encode

semantics in types whenever it is beneficial. Let the compiler
do your work.

PFP: What does it bring to a company

I Imagine you will do the next project in Haskell...
I What are the consequences?
I You get smart and creative people by definition(previous slide).
I What is their motivation?
I Your software is more likely to be less buggy

PFP: There is no turning back

I Do not fear the purely functional platforms. They are often
the final frontier of programming techniques.

I Imagine you decide to learn purely functional programming
incorporating strong static typing.

I Problem: There is no turning back
I Cause: You get lazy beyond belief
I Solution: Its not really a problem is it?

